Accomplishments
Implementation of blockchain – IoT-based integrated architecture in green supply chain
- Abstract
- PDF Full Text
Purpose Digital supply chains require nascent technologies like blockchain and Internet of Things (IoT). There is a need to develop a roadmap for the implementation of these technologies, as they require a huge amount of resources and infrastructure. The purpose of this paper is to analyze the challenges of implementing blockchain-IoT integrated architecture in the green supply chain and develop strategies for the same. Design/methodology/approach After a thorough literature survey of Scopus-indexed journals and books, 37 barriers were identified, which were then brought down to 15 barriers after confirming with industry and academic experts using the Delphi method. Using the total interpretive structural modeling (TISM) method and cross-impact matrix multiplication applied to classification (MICMAC) analysis, the barriers were modeled, and finally, strategies were formulated using a concept map to handle the barriers in the blockchain-IoT integrated architecture for a green supply chain. Findings This paper presents the research on barriers that can be considered for incorporating blockchain and IoT in the green supply chain. It was found from the TISM model that environmental concerns are Level-1 barriers and need to be addressed by developing appropriate technology and allocating funds for the same. An integrated ecosystem with blockchain and IoT is developed. Research limitations/implications The focus of this study was on the challenges of blockchain and IoT; hence, it is required to extend the research and find challenges for different industries and also analyze the criteria using other multi-criteria decision-making (MCDM) methods. Further research is required for the integration of blockchain-IoT with supply chain functions.