Accomplishments

A Novel Voice Conversion Approach Using Admissible Wavelet Packet Decomposition


  • Details
  • Share
Category
Articles
Publisher
Springer
Publishing Date
01-Dec-2013
volume
28
Issue
1
Pages
1-10

The framework of voice conversion system is expected to emphasize both the static and dynamic characteristics of the speech signal. The conventional approaches like Mel frequency cepstrum coefficients and linear predictive coefficients focus on spectral features limited to lower frequency bands. This paper presents a novel wavelet packet filter bank approach to identify non-uniformly distributed dynamic characteristics of the speaker. Contribution of this paper is threefold. First, in the feature extraction stage, dyadic wavelet packet tree structure is optimized to involve less computation while preserving the speaker-specific features. Second, in the feature representation step, magnitude and phase attributes are treated separately to rule out on the fact that raw time-frequency traits are highly correlated but carry intelligent speech information. Finally, the RBF mapping function is established to transform the speaker-specific features from the source to the target speakers. The results obtained by the proposed filter bank-based voice conversion system are compared to the baseline multiscale voice morphing results by using subjective and objective measures. Evaluation results reveal that the proposed method outperforms by incorporating the speaker-specific dynamic characteristics and phase information of the speech signal.

Apply Now Enquire Now